BEST PAPER AWARD
PREISTRÄGER
»IMPACT ON SCIENCE«
Best Paper Award

Simon Meister (TU Darmstadt Visual Inference)
Junhwa Hur (TU Darmstadt Visual Inference)
Stefan Roth (TU Darmstadt Visual Inference)

»UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss«

PROBLEM

Circumvent the need for ground truth flow in convolutional networks

- Supervised learning requires rely on the availability of a large amount of data with ground truth optical flow
- Networks are trained on synthetically generated image
- Mismatch between synthetic training data and test scenarios
- The generalization to real scenes remains challenging
RESULT
End-to-end unsupervised approach that demonstrates the effectiveness of unsupervised learning for optical flow

USP
This is the first universal closed form approach for end-to-end unsupervised learning that surpasses architecturally similar supervised approaches trained exclusively on synthetic data. By using classical energy-based optical flow methods to construct an unsupervised loss, the approach is groundbreaking in demonstrating the value of classical, non-learning results for deep learning approaches.