• Publikationen
Show publication details

Sadik, Ahmed R.; Urban, Bodo

Applying the PROSA Reference Architecture to Enable the Interaction between the Worker and the Industrial Robot: Case Study: One Worker Interaction with a Dual-Arm Industrial Robot

2017

Herik, Jaap van den (Ed.) et al.: ICAART 2017 Vol. 1 : Proceedings of the 9th International Conference on Agents and Artificial Intelligence. SciTePress, 2017, pp. 190-199

International Conference on Agents and Artificial Intelligence (ICAART) <9, 2017, Porto, Portugal>

Involving an industrial robot in a close physical interaction with the worker became quite possible, as a result of the availability of different collaborative industrial robots in the market. The physical cooperation between the industrial robot and the worker usually done under the umbrella of the flexible manufacturing paradigm, where both the industrial robot and the worker need to change their tasks fast and efficiently, to cope with the changes in the manufacturing process. This means that a reliable manufacturing control system must stand behind this physical interaction to achieve the proper communication interaction. A holonic control architecture is an ideal solution for this problem. Therefore, during this research we study the most commonly applied model of the holonic control architecture, then we apply this architecture on our case study, where one worker cooperates with a dual-arm industrial robot to build and produce any new product. Also the research uses the worker's hand gesture recognition as a method to interact with the industrial robot during the execution of a cooperative production scenario.

Show publication details

Sadik, Ahmed R.; Urban, Bodo; Adel, Omar

Using Hand Gestures to Interact with an Industrial Robot in a Cooperative Flexible Manufacturing Scenario

2017

Proceedings of the 3rd International Conference on Mechatronics and Robotics Engineering : ICMRE 2017. New York: ACM, 2017. (ACM International Conference Proceedings Series (ICPS) 01414), pp. 11-16

International Conference on Mechatronics and Robotics (ICMRE) <3, 2017, Paris, France>

Gesture recognition is a booming field of interest for many researchers. The Human-Machine Interaction developed from using wired devices such as the mouse and the keyboard till using touch screens and nowadays is evolving to the gesture interaction. Simultaneously, the machine or the industrial robot in particular is developing as well. The usual trend of using an industrial robot in a typical factory is to isolate it from the workers during the operation, due to the safety regulations. However, nowadays a new generation of a safe cooperative industrial robot exists. These robots are no longer dangerous to work around the humans. In a flexible manufacturing system, a cooperative scenario between the worker and the industrial robot can achieve the flexible manufacturing objectives. Therefore, during this research we propose and implement a holonic control system architecture which connects the industrial robot with the worker together in the same work environment in a flexible cooperative scenario. Moreover, we use the worker hand gestures to generate control events associated with the worker activities. Accordingly, the interaction between the worker and the industrial robot can be established.

Show publication details

Sadik, Ahmed R.; Urban, Bodo

A Holonic Control System Design for a Human and Industrial Robot Cooperative Workcell

2016

Cunha, Bernardo (Ed.) et al.: 2016 International Conference on Autonomous Robot Systems and Competitions : ICARCS 2016. Los Alamitos, Calif.: IEEE Computer Society Conference Publishing Services (CPS), 2016, pp. 118-123

International Conference on Autonomous Robot Systems and Competitions (ICARSC) <2016, Braganca, Portugal>

As a result of the rapid development in industrial robot technology, a close safe cooperation with the human worker became quite possible. Accordingly an appropriate control system must exist to provide an intelligent tool for their information interaction. Therefore this paper is proposing a novel implementation model for a holonic control system solution. The ultimate goal of the proposed holonic control system is to adeptly manage the information exchange between an industrial robot in cooperation with a human worker in a production workcell. The novelty in the proposed holonic solution is that it merges the advantages of two well-known control architectures. The two architectures are IEC 61499 standard and autonomous reactive agent model. IEC 61499 has been used to implement the holon physical component, to handle the physical input/output (I/O) from/to an industrial robot or a human worker. Simultaneously autonomous reactive agent technology has been used to implement the holon communication component, to handle the information exchange between an industrial robot holon and a worker holon.

Show publication details

Sadik, Ahmed R.; Urban, Bodo

A Novel Implementation Approach for Resource Holons in Reconfigurable Product Manufacturing Cell

2016

Gusikhin, Oleg (Ed.) et al.: Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics : Volume 1. SciTePress, 2016, pp. 130-139

International Conference on Informatics in Control, Automation and Robotics (ICINCO) <13, 2016, Lisbon, Portugal>

Holonic Control Architecture is a successful solution model for reconfigurable manufacturing problems. Two well-known different technologies have been used separately to implement the holonic control model. The first technology is IEC 61499 standard, and the second is autonomous reactive agent. Both of the previous mentioned technologies have its own pros and cons. Therefore this research is merging the two technologies together in one solution body, to magnifying their pros and reduce their cons. Ultimately; it provides a novel implementation model for the manufacturing holons, to be followed in similar reconfigurable manufacturing problems. A human worker in cooperation with a safe industrial robot, has been selected as a case study of a reconfigurable manufacturing problem. The proposed holonic control solution has been applied to the case study, to evaluate the ability of the solution to satisfy the requirements of the case study. The results show the ability of the proposed control solution to provide a flexible physical and logical interaction framework, which can be scaled over more workers in cooperation with more industrial robots.

Show publication details

Adel, Omar; Urban, Bodo (Betreuer); Sadik, Ahmed R. (Betreuer)

Industrial Robot as an Efficient Tool for the Worker in the Flexible Manufacturing Paradigm

2016

Rostock, Univ., Bachelor Thesis, 2016

Industrial robots are essential resources in most of nowadays factories and/or manufacturing facilities. The industrial robots have very strong influence to reshape the industrial production concepts. From the moment the industrial robot appeared in factories till nowadays, the trend of using the industrial robot on the shop floor as a replacement of the human being. Therefore the industrial robots involved in mass production paradigm. During the mass production processes the industrial robots are preforming many repetitive tasks which are time consuming and boring for the human being, such as in products assembly and material handling. However in other production approach such as lean or flexible manufacturing paradigm, involving an industrial robot issues an important question, which is how an industrial robot can flexibly adapt to the changes in the production requirements and needs. Consequently the mentioned trend of using the industrial robot as the worker replacement has dramatically evolved, instead a new concept has been risen. The concept is to use the industrial robot along with the worker in cooperative processes. The main aim of this concept is to get both the advantages of the human worker and the industrial robot in a close proximity cooperative work. In other words the new concept offers the industrial robot as a new tool for the workers over the shop floor. The lean manufacturing paradigm has been built upon the idea of eliminating or reducing the "muda" (Japanese for waste or any activity that consumes resources without adding value) in design, manufacturing, distribution, and customer service processes. To apply this concept in a workcell which combines the human worker with an industrial robot, the industrial robot must be able to understand and comprehend the dependencies between his tasks and the human worker tasks. Thus during this thesis we are looking for a theoretical method to organize the task dependencies between an industrial robot in cooperation with the human worker. Then we create our implemented solution which can integrate the industrial robot with the worker based on the tasks dependencies. Furthermore we compose a cooperation scenario, to be used later in testing and validating our conceptual solution on a real case study of industrial robot & worker cooperative workcell.