• Publications
Show publication details

Wen, Zhuoman; Kuijper, Arjan; Fraissinet-Tachet, Matthieu; Wang, Yanjie; Luo, Jun

Mutual Information-Based Tracking for Multiple Cameras and Multiple Planes

2017

Arabian Journal for Science and Engineering, Vol.42 (2017), 8, pp. 3451-3463

Based onmutual information (MI), this paper proposes a systematic analysis of tracking a multi-plane object with multiple cameras. Firstly, a geometric model consisting of a piecewise planar object and multiple cameras is setup. Given an initial pose guess, the method seeks a pose update that maximizes the global MI of all the pairs of reference image and camera image. An object pose-dependent warp is proposed to ensure computation precision. Six variations of the proposed method are designed and tested. Mode 1, i.e., computing the 2nd-order Hessian of MI at each step as the object pose changes, leads to the highest convergence rates; Mode 2, i.e., computing the 1st-order Hessian of MI once at the beginning, occupies the least time (0.5-1.0 s). For objects with simple-textured planes, applying Gaussian blur first and then useMode 1 shall generate the highest convergence rate.

Show publication details

Fraissinet-Tachet, Matthieu; Schmitt, Michael; Kuijper, Arjan; Wen, Zhuoman

Multi-Camera Piecewise Planar Object Tracking with Mutual Information

2016

Journal of Mathematical Imaging and Vision, Vol.56 (2016), 3, pp. 591-602

Real-time and robust tracking of 3D objects based on a 3D model with multiple cameras is still an unsolved problem albeit relevant in many practical and industrial applications. Major problems are caused by appearance changes of the object. We present a template-based tracking algorithm for piecewise planar objects. It is robust against changes in the appearance of the object (occlusion, illumination variation, specularities). The version we propose supports multiple cameras. The method consists in minimizing the error between the observed images of the object and the warped images of the planes. We use the mutual information as registration function combined with an inverse composition approach for reducing the computational costs and get a near-real-time algorithm. We discuss different hypotheses that can be made for the optimization algorithm.

Show publication details

Fraissinet-Tachet, Matthieu; Kuijper, Arjan (Advisor); Schmitt, Michael (Advisor)

Mutual Information-Based Piecewise Planar Object Tracking

2014

Darmstadt, TU, Master Thesis, 2014

This master thesis deals with a template based tracking algorithm for piecewise planar objects. It is robust against changes in the appearance of the object (occlusion, illumination variation, specularities). The version that we propose supports multiple cameras. The method consists in minimizing the error between the observed images of the object and the warped images of the planes. We use for that an estimation of the pose of the object, which is to say a rigid 3D transformation. The robustness is obtained by using the mutual information as registration function. The main drawback of the mutual information is that it has a high computation complexity. We use an inverse composition approach for the warp update, so that pre-computations can be done and it decreases the complexity of the algorithm. We develop a way of computing the warp update and analyse the impact of this initiative on the optimization process. We also determine the optimal parameters for running the algorithms.