

## Societal Readiness Level

Coastal ecosystems are vital to human societies, supporting livelihoods, providing food security, and nurturing cultural connections to marine environments. As the world becomes increasingly aware of the need for sustainable practices, evaluating the societal readiness of innovations has become essential in fostering economic, environmental, and social resilience. Societal readiness levels (SRLs) help gauge how prepared communities and stakeholders are to adopt new technologies, policies, or projects, especially those that impact public well-being, ecosystems, and economic stability.

Developing a strong societal readiness framework involves assessing public awareness, stakeholder engagement, and the potential societal impacts of innovations or interventions. Societal readiness integrates multiple factors, including cultural acceptance, economic feasibility, and the capacity for communities to adapt. This holistic approach ensures that new initiatives not only advance scientifically but are also embraced by the societies they aim to benefit. By aligning SRLs with societal goals and needs, organizations can better implement sustainable practices and promote long-term community resilience.

|                            |    | SRL: Societal Readiness Level                                                                                                                |
|----------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------|
| Stage 5:<br>Sustain        | 11 | Collect data from solved cases to provide future facilitation and improvement                                                                |
|                            | 10 | Actual project solution(s) proven in relevant environment                                                                                    |
| Stage 4:<br>Commercialize  | 9  | Proposed solution(s) as well as a plan for societal adaptation complete and qualified                                                        |
|                            | 8  | Refinement of project and/or solution and, if needed, retesting in relevant environment with relevant stakeholders                           |
| Stage 3:<br>Develop & Test | 7  | Solution(s) demonstrated in relevant environment and in co-operation with relevant stakeholders to gain initial feedback on potential impact |
|                            | 6  | Proposed solution(s) validated, now by relevant stakeholders in the area                                                                     |
|                            | 5  | Problem validated through pilot testing in relevant environment to substantiate proposed impact and societal readiness                       |
| Stage 2:<br>Prototype      | 4  | Initial testing of proposed solution(s) together with relevant stakeholders                                                                  |
|                            | 3  | Propose solution(s) and potential impact; identifying relevant stakeholders for the project.                                                 |
| Stage 1:<br>Conceptualize  | 2  | Create concept with potential for (sub)systemic change, considering socially and environmentally acceptable impacts e.g., bio circularity    |
|                            | 1  | Identifying problems                                                                                                                         |



## Societal Readiness Level

| Step 1: Identifying Problems                                             | 3  |
|--------------------------------------------------------------------------|----|
| Step 2: Create Concept with Potential for Systemic Change                | 4  |
| Step 3: Propose Solutions and Identify Relevant Stakeholders             | 5  |
| Step 4: Initial Testing of Proposed Solution with Relevant Stakeholders  | 6  |
| Step 5: Validate the Problem Through Pilot Testing                       | 7  |
| Step 6: Validate Proposed Solution with Relevant Stakeholders            | 8  |
| Step 7: Demonstrate Solution in Relevant Environment and Gather Feedback | 9  |
| Step 8: Refine Solution and Plan for Societal Adaptation                 | 10 |
| Step 9: Finalize Solution and Societal Adaptation Plan                   | 11 |
| Step 10: Implement Solution in Target Environment                        | 12 |
| Step 11: Document Outcomes and Lessons Learned for Future Improvement    | 13 |

### **Stage 1: Conceptualize**

## **Step 1: Identifying Problems**

The first step in societal readiness is to develop a clear understanding of the problem your solution aims to address. This requires identifying the root causes of the societal, environmental, or economic issue at hand. By doing so, companies can align their solutions with real-world challenges, ensuring relevance and impact. At this stage, the focus is on collecting data, assessing current challenges, and understanding how these problems affect different stakeholders. Defining the scope and urgency of the issue helps to lay the foundation for further concept development.

### HOW TO

### 1. Conduct Problem Research:

Gather data on societal, environmental, and market conditions to understand the broader context of the problem. Use research papers, industry reports, and case studies to determine the significance of the issue.

### 2. Engage with Affected Stakeholders:

Consult stakeholders who are directly impacted by the problem to gather first-hand insights. Engaging with communities, customers, or environmental groups can reveal pain points, clarifying the problem's magnitude and its societal impact.

### 3. Analyze Root Causes:

Identify the core drivers behind the problem by using tools like root cause analysis (Ishikawa diagrams, 5 Whys). This helps in defining the systemic issues that need to be addressed and ensures the problem is understood from all angles.

### 4. Prioritize the Urgency of the Issue:

Assess the urgency and the potential consequences. Prioritize which problems need immediate action and can lead to more targeted solutions that resonate with society.

### **EXAMPLE**

A marine conservation company conducting research identifies coastal erosion as a growing issue affecting both local communities and biodiversity. By engaging with local stakeholders—such as fishermen and environmental agencies—they gain valuable insights into how erosion impacts livelihoods, tourism, and habitats. Through problem analysis, they discover that outdated construction methods and rising sea levels are the primary drivers of erosion. The company prioritizes coastal communities that are most at risk, setting the stage for a solution that addresses the root causes and has immediate social relevance.

## **Step 2: Create Concept with Potential for Systemic Change**

Once the problem is clearly defined, the next step is to create a concept that not only addresses the issue but has the potential for (sub)systemic change. The goal is to ensure that the solution is socially acceptable, environmentally sustainable, and capable of being scaled or adapted to other regions or contexts. A well-thought-out concept should balance innovation with practicality, ensuring that it can integrate with existing systems while still having transformative potential. This stage focuses on designing solutions that consider biocircularity—using renewable resources and minimizing waste—and other sustainability principles, ensuring long-term impact. Companies need to consider the broader societal implications of their innovations to avoid negative side effects and ensure public acceptance.

### HOW TO

### 1. Design for Biocircularity:

Develop a concept promoting resource regeneration and sustainability by using renewable resources, reducing waste, and recycling. Focus on eco-friendly solutions that lower the carbon footprint of current systems.

### 2. Ensure Societal Relevance:

Align the concept with societal needs and values, ensuring that it addresses key social and cultural concerns. Consider the economic, social, and environmental impacts, making sure the concept is acceptable to all stakeholders.

### 3. Consider Long-Term Impact and Scalability:

Design scalable, adaptable solutions that can expand beyond the initial region and remain effective in different contexts. Consider the potential for systemic change, where the solution inspires changes in policy, business models, or public behavior.

### 4. Engage Stakeholders Early:

Collaborate with key stakeholders to refine the concept and ensure it aligns with their expectations and needs. This will not only enhance the societal acceptability of the solution but also increase the likelihood of its adoption and success in the long term.

### **EXAMPLE**

A startup focused on restoring marine ecosystems develops a concept for a biocircular, scalable solution to address coastal erosion. The solution integrates natural barriers, such as oyster reefs and mangroves, that regenerate and provide protection to shorelines. The company engages with coastal communities and environmental agencies early in the process to ensure the solution aligns with local needs and social acceptance.

## **Step 3: Propose Solutions and Identify Relevant Stakeholders**

At this stage, the focus shifts from concept creation to proposing concrete solutions that can be tested and refined. Companies need to craft detailed solutions that have the potential to address the identified problem while considering their environmental and societal impact. Identifying relevant stakeholders is also critical at this point, as their involvement can guide the refinement of the solution and ensure its relevance in real-world settings. The aim here is to propose actionable solutions that align with the systemic changes outlined in Step 2. Stakeholders—such as customers, communities, regulators, and industry experts—play a crucial role in providing feedback and helping to shape the proposed solution for optimal impact.

### HOW TO

### 1. Develop a Detailed Solution:

Create a solution that directly addresses the problem defined in Step 1 and is grounded in the concepts of biocircularity and sustainability introduced in Step 2. The solution should be practical, innovative, and feasible for real-world application, while also considering the scalability for broader impact.

### 2. Identify and Engage Stakeholders:

Identify key stakeholders who have a direct or indirect interest in the solution. This includes end-users, community groups, government agencies, industry leaders, or environmental organizations. Engage them early to gather insights on the solution's viability, potential challenges, and areas for improvement.

### 3. Assess Feasibility and Potential Impact:

Evaluate the solution's feasibility in terms of technology, cost, and resources, while also assessing short- and long-term environmental and societal impacts to ensure viability and potential for systemic change.

### 4. Incorporate Stakeholder Feedback:

Use stakeholder input to refine the solution, ensuring it aligns with their needs and expectations. Collaborate with stakeholders to foster buy-in and facilitate smoother implementation.

### **EXAMPLE**

A company working on marine ecosystem restoration proposes a biodegradable filtration system to combat coastal water pollution. Designed to filter pollutants while allowing natural water flow, it aims to restore marine biodiversity. The company engages stakeholders, including environmental NGOs, coastal communities, and government agencies, to refine the system. Collaboration ensures the solution meets local conditions, regulatory requirements, and societal standards, maximizing its impact on pollution reduction.

## **Step 4: Initial Testing of Proposed Solution with Relevant Stakeholders**

With a concrete solution and stakeholder involvement established, the next step is initial testing in a controlled, relevant environment. This stage is crucial for gathering preliminary data and feedback to assess the viability of the solution. By engaging stakeholders during testing, companies can fine-tune the solution, address unforeseen challenges, and ensure alignment with societal expectations and environmental goals. Initial testing lays the foundation for wider adoption and later stages of development by providing data-driven insights into the solution's effectiveness and impact.

### HOW TO

### 1. Set Clear Testing Objectives:

Define specific goals for testing, such as performance benchmarks, environmental impact measures, or social acceptability criteria. These objectives provide a clear framework for evaluating success and identifying areas for improvement.

### 2. Engage Stakeholders in Testing:

Involve key stakeholders—customers, communities, and regulators—in testing to gather diverse feedback to help refine the solution, confirm its practicality, and ensure alignment with local expectations.

### 3. Use Pilot Environments:

Conduct testing in controlled environments that simulate real-world conditions. Pilot settings allow risk-free adjustments, manageable scaling, and gradual stakeholder engagement.

### 4. Collect Data and Analyze Results:

Gather quantitative and qualitative data on performance, usability, and stakeholder satisfaction. Analyzing this data identifies strengths, weaknesses, and challenges, offering a basis for refining the solution.

### 5. Iterate Based on Feedback:

Make adjustments based on testing and stakeholder feedback. Iterating improves solution effectiveness, stakeholder alignment, and readiness for the next development phases.

### **EXAMPLE**

A renewable energy company is testing a solar-powered desalination device to provide clean water for coastal communities. Initial testing involves collaboration with local environmental groups, municipal authorities, and community leaders. The company establishes clear objectives, including water output, energy efficiency, and ease of use. In a pilot environment along the coastline, they test the device under various weather conditions to simulate real-world scenarios. Feedback from stakeholders indicates that while the device performs well, its maintenance requirements need to be simplified for long-term adoption.

## **Step 5: Validate the Problem Through Pilot Testing**

In this step, the goal is to validate the initial solution through pilot tests in real or closely replicated environments. This phase is crucial for assessing the solution's effectiveness and alignment with societal needs. Targeted testing helps companies measure initial impact, identify improvement areas, and confirm societal relevance. This phase bridges conceptual development and practical implementation, ensuring the solution can be effectively scaled and adapted.

### HOW TO

### 1. Define Impact Metrics:

Establish specific metrics to evaluate the pilot's success, including environmental impact indicators, cost savings, and social benefits. Clear metrics enable objective assessment of the solution's effectiveness in addressing the target problem.

### 2. Select Representative Testing Sites:

Choose pilot sites that reflect the real-world environments for eventual deployment. Testing in relevant settings reveals operational challenges and regional adaptability, preparing the solution for broader application.

### 3. Involve Local Stakeholders:

Engage community members, industry experts, and local organizations in pilot testing to gather diverse perspectives and ensure the solution meets societal expectations.

### 4. Monitor and Analyze Outcomes:

Collect and analyze data during the pilot, focusing on performance metrics, usability, and stakeholder feedback. This analysis offers evidence of the solution's impact, highlighting strengths and areas for improvement.

### 5. Document Findings for Future Phases:

Record results and key insights from the pilot testing phase. This documentation will guide design refinements and inform stakeholders in later development and commercialization phases.

### **EXAMPLE**

A company developing a biodegradable fishing net designed to reduce marine waste conducts pilot testing along the North Sea coast, where lost nets contribute significantly to local marine pollution. They define impact metrics, including degradation rate, durability, and environmental safety. Partnering with fishing communities and marine conservation groups, the company tests the nets under typical fishing conditions, gathering data on performance and stakeholder acceptance. Analysis reveals that while the nets degrade effectively, slight adjustments in durability could improve their usability for local fishers.

## Step 6: Validate Proposed Solution with Relevant Stakeholders

Step 6 expands validation from the pilot testing phase by gathering feedback from a broader range of stakeholders. The solution is tested with individuals, communities, and organizations affected by its outcomes. This validation ensures the solution is effective and socially accepted, facilitating smoother implementation in various contexts. Engaging stakeholders allows companies to refine the solution using real-world insights, enhancing its practicality and impact.

### HOW TO

### 1. Identify Key Stakeholders:

Identify stakeholders affected by, involved with, or influential in the solution's impact area, including local communities, regulatory bodies, environmental organizations, and industry partners, each providing unique perspectives.

### 2. Conduct Collaborative Testing Sessions:

Arrange sessions where stakeholders can interact with the solution, share feedback, and provide insights on its potential impact. Structured feedback sessions capture diverse opinions and reveal areas for adjustment.

### 3. Gather Qualitative and Quantitative Feedback:

Use surveys, interviews, and performance metrics to collect both qualitative and quantitative data from stakeholders to understand the solution's real-world viability and societal readiness.

### 4. Refine Solution Based on Stakeholder Input:

Analyze the collected feedback to identify necessary changes. Making adjustments based on real-world usage and community feedback increases the solution's relevance and acceptance in its target environment.

### 5. Document Stakeholder Validation Outcomes:

Record the validation process, insights gained, and adjustments made in response to stakeholder feedback. This documentation strengthens stakeholder trust, establishes transparency, and prepares the solution for demonstration in the next stage.

### **FXAMPLE**

A startup working on a waste-reduction initiative for coastal tourism collaborates with local authorities, environmental groups, and tourism operators in pilot locations. They conduct interactive workshops where stakeholders use the solution—a mobile app that tracks waste reduction efforts and provides incentives for sustainable behavior. Feedback reveals that while the app is intuitive, adding more localized content could increase engagement among different user groups. After refining the app based on these suggestions, the startup documents stakeholder feedback, capturing insights that will enhance the solution's impact and adoption.

## **Step 7: Demonstrate Solution in Relevant Environment and Gather Feedback**

In Step 7, the solution undergoes further testing in a realistic environment with a broad network of stakeholders. This phase allows for observing its real-world impact, gathering feedback, and assessing societal acceptability. By engaging stakeholders and addressing concerns, companies can strengthen relationships and lay a supportive foundation for future implementation. Operational testing is crucial for refining the solution, optimizing performance, and adapting to the community's specific challenges.

### HOW TO

### 1. Conduct Field Testing in a Relevant Environment:

Deploy the solution in the targeted operational environment, whether that's a specific community, industry sector, or geographical area to assess functionality and compatibility with local conditions.

### 2. Host Collaborative Feedback Sessions:

Engage stakeholders through workshops, focus groups, and discussions to gather insights on the solution's impact, usability, and acceptance. Collaborative sessions encourage open dialogue and provide diverse perspectives.

### 3. Implement Performance Tracking Metrics:

Set up clear KPIs and performance metrics. Quantitative data helps measure impact, while qualitative feedback from stakeholders reveals nuances in user experience.

### 4. Iterate Based on Real-World Feedback:

Use insights from the field test to refine the solution. Adjustments should address specific challenges and meet stakeholder expectations, ensuring the solution remains aligned with societal needs.

### 5. Document and Analyze Demonstration Results:

Document the outcomes of the demonstration phase, including key performance metrics, feedback summaries, and areas for improvement. This prepares the solution for final refinement before market entry.

### **EXAMPLE**

A company developing a sustainable fisheries management tool tests it in collaboration with coastal communities and regulatory agencies. They deploy the tool in a selected region, where stakeholders can monitor fish populations and manage harvest levels. Feedback sessions reveal that fishers appreciate the tool but require more localized data to maximize utility. Based on this input, the company adapts the tool to provide area-specific insights. Documenting these results enables them to enhance the tool's relevance for long-term use and expansion to other regions.

### **Stage 4: Commercialize**

## **Step 8: Refine Solution and Plan for Societal Adaptation**

In Step 8, the solution undergoes final adjustments to ensure it aligns closely with stakeholder needs and the specific context of its application. This step involves refining the product, process, or service to maximize societal relevance and ensure that it addresses community requirements effectively. Additionally, creating a clear plan for societal adaptation is key, focusing on strategies for integrating the solution into existing social frameworks and ensuring widespread acceptance. Testing and minor retesting may also be required to confirm that all refinements contribute to the solution's effectiveness and readiness for market entry.

### HOW TO

### 1. Implement Final Refinements:

Make necessary adjustments to enhance usability, relevance, and effectiveness in the intended environment based on previous feedback and performance results.

### 2. Develop a Societal Adaptation Strategy:

Create a plan detailing how the solution will integrate into existing social or industry frameworks, including any necessary training, education, or stakeholder engagement initiatives to facilitate acceptance.

### 3. Reassess Stakeholder Needs and Expectations:

Ensure the solution addresses the core needs identified earlier. Additional discussions or surveys can confirm that adjustments align with stakeholder priorities.

### 4. Conduct Limited Retesting if Needed:

Where changes occur, conduct small-scale testing to validate improvements in a real-world context, ensuring optimal performance before full implementation.

### 5. Document Finalized Solution and Adaptation Plan:

Prepare detailed documentation on the refined solution and adaptation strategy to serve as a reference for stakeholders and guide full-scale implementation.

### **EXAMPLE**

A developer of an eco-friendly coastal defense system refines the design based on the insights gathered in the demonstration phase. Local community members highlighted the need for more accessible maintenance features and better integration with existing coastal landscapes. In response, the team adapts the design to include modular components that blend seamlessly with natural features and require minimal upkeep. To facilitate societal adaptation, they plan a series of workshops to educate local maintenance teams on the system's upkeep. Through limited retesting, they confirm these updates enhance both functionality and user satisfaction, positioning the solution for successful integration into regional coastal management initiatives.

## **Step 9: Finalize Solution and Societal Adaptation Plan**

In Step 9, the solution is fully developed, and a detailed adaptation plan is created to ensure smooth implementation within the target society or industry. This involves fine-tuning the solution for optimal performance and finalizing a strategic plan for integration. The plan outlines necessary steps for adoption, including training, support systems, and evaluation metrics for long-term success. By the end of this step, the solution should be market-ready with a clear roadmap for societal acceptance and usage.

### HOW TO

### 1. Conduct a Comprehensive Solution Review:

Perform a final evaluation to ensure the solution meets all intended specifications, addresses the identified societal needs, and is viable for widespread application.

### 2. Define Key Performance Indicators (KPIs) for Long-term Tracking:

Establish clear KPIs that will track the solution's impact over time. These indicators should focus on social, environmental, and economic performance in alignment with stakeholder expectations.

### 3. Develop a Training and Support Framework:

Plan necessary training sessions or workshops to support users, employees, or communities in understanding and adopting the solution effectively.

### 4. Outline Ongoing Monitoring and Feedback Mechanisms:

Create a plan for collecting and assessing feedback continuously postimplementation. Regular reviews of feedback allow for minor adjustments as the solution scales up.

### 5. Prepare for Full-scale Implementation:

Begin a phased rollout to ensure successful societal integration and prepare for necessary adjustments during the initial application stages.

### **EXAMPLE**

A sustainable fisheries management company has developed a solution to balance ecosystem health with local fishing practices. After rigorous testing and stakeholder feedback, the company finalizes an adaptation plan that includes training workshops for local fishermen on sustainable methods and a support system to address concerns. Key performance indicators monitor fish stock recovery, community income stability, and ecosystem health. Continuous feedback mechanisms are established with regular meetings to ensure alignment with community and environmental goals. This comprehensive approach enables the company to implement the solution confidently, ensuring it is sustainable, socially accepted, and capable of making a long-term impact.

## **Step 10: Implement Solution in Target Environment**

At this stage, the solution is fully deployed and operational within the intended environment, marking its transition from a pilot to an established, functioning system. Step 10 focuses on assessing the solution's performance in real-world conditions, making any minor adjustments as needed to meet societal expectations and ensure ongoing relevance. Continuous data collection, stakeholder communication, and impact monitoring are crucial at this point to ensure that the solution delivers intended benefits and is positively received by the community, market, or organization it serves.

### HOW TO

### 1. Deploy the Solution at Full Scale:

Launch the solution in the designated environment, ensuring that all necessary systems, tools, and support networks are in place for smooth integration.

### 2. Conduct Regular Monitoring and Data Collection:

Begin consistent monitoring of the solution's performance against established KPIs, capturing data on social, environmental, and economic impacts.

### 3. Maintain Open Channels for Stakeholder Feedback:

Provide regular updates and gather ongoing feedback from stakeholders to confirm the solution meets their needs and expectations.

### 4. Make Necessary Adjustments Based on Real-world Performance:

Be ready to make adjustments based on monitoring data or stakeholder input, especially in early stages of full-scale implementation.

### 5. Ensure Knowledge Transfer and Training Continuity:

Establish or continue training and support programs to ensure all relevant parties are fully equipped to operate and maintain the solution long-term.

### **EXAMPLE**

An aquaculture company has developed and tested a sustainable fish-farming system designed to reduce water pollution and increase fish yield. After successful trials, the company implements the system at full scale across multiple sites, training site managers and local workers on best practices. Key performance indicators, such as water quality metrics and fish growth rates, are regularly monitored. Stakeholders, including local communities and environmental organizations, are kept informed through quarterly reports. As data is gathered, the company makes minor adjustments, such as optimizing feeding schedules to further reduce waste, ensuring that the solution operates effectively in real-world conditions. This structured approach allows the company to maximize societal and environmental benefits, establishing a sustainable, scalable model that can be replicated in similar regions globally.

# **Step 11: Document Outcomes and Lessons Learned for Future Improvement**

The final step is dedicated to comprehensive documentation and reflection on the implementation process, capturing valuable data on the solution's performance, societal impact, and lessons learned. Step 11 is critical for sustaining the solution's benefits over the long term and providing a knowledge base that can inform similar projects. By consolidating data and analyzing case outcomes, organizations and stakeholders can identify best practices and improvements for future initiatives. This step also ensures that the collected knowledge contributes to a body of resources that supports continuous learning and adaptation.

### HOW TO

### 1. Document Key Outcomes and Impact Data:

Summarize project outcomes by evaluating KPIs, societal impact measures, and stakeholder feedback to provide a clear view of the project's effectiveness.

### 2. Identify Best Practices and Areas for Improvement:

Reflect on successful strategies, any unforeseen challenges, and potential areas for enhancement to refine future project execution.

### 3. Compile Case Studies and Reports:

Create case studies that highlight major insights and recommendations based on the collected data, making them available to relevant teams and stakeholders.

### 4. Develop a Knowledge Sharing Framework:

Establish a process for sharing insights across the organization or network, ensuring the lessons learned inform and improve future projects.

### 5. Set Up Ongoing Monitoring or Follow-up Mechanisms:

Create guidelines for continued monitoring of societal impact if applicable, and consider periodic follow-ups to track the project's long-term effects.

### **EXAMPLE**

After successfully implementing a coastal restoration project aimed at reducing erosion and promoting biodiversity, an environmental organization gathers data on shoreline changes, species return rates, and community satisfaction. It compiles this information into a comprehensive report that details the project's outcomes and evaluates its impact on both the ecosystem and local economies. The organization identifies best practices, such as the use of native plants and community involvement, which contributed significantly to the project's success. It also notes challenges like weather-related delays and provides recommendations to improve scheduling in future projects. This report is then shared with other environmental groups and stakeholders through an online knowledge base, providing a model for similar initiatives worldwide.

